Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(1): e3001693, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689548

RESUMO

RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/fisiologia , Infecções por Enterovirus/virologia , Sítios Internos de Entrada Ribossomal , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Interações Hospedeiro-Patógeno
2.
Nucleic Acids Res ; 51(1): 315-336, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546762

RESUMO

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Ribonucleotídeos , Humanos , Antivirais/farmacologia , Exorribonucleases/metabolismo , Ribonucleotídeos/química , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Desenho de Fármacos
3.
bioRxiv ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982684

RESUMO

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.

4.
Enzymes ; 49: 195-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696832

RESUMO

Stochastic outcomes of viral infections are attributed in large part to multiple layers of intrinsic and extrinsic heterogeneity that exist within a population of cells and viruses. Traditional methods in virology often lack the ability to demonstrate cell-to-cell variability in response to the invasion of viruses, and to decipher the sources of heterogeneities that are reflected in the variable infection dynamics. To overcome this challenge, the field of single-cell virology emerged less than a decade ago, enabling researchers to reveal the behavior of single, isolated, infected cells that has been masked in population-based assays. The use of microfluidics in single-cell virology, in particular, has resulted in the development of high-throughput devices that are capable of capturing, isolating, and monitoring single infected cells over the duration of an infection. Results from the studies of viral infection dynamics presented in this chapter indicate how single-cell data provide a more accurate prediction of the start time, replication rate, duration, and yield of infection when compared to population-based data. Additionally, single-cell analysis reveals striking differences between genetically distinct viruses that are almost indistinguishable in population methods. Importantly, both the efficacy and distinct mechanisms of action of antiviral compounds can be elucidated by using single-cell analysis.


Assuntos
Análise de Célula Única , Vírus , Antivirais , Microfluídica
5.
Lab Chip ; 19(22): 3787-3795, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31612163

RESUMO

Fluid manipulation in microfluidic systems is often controlled by active pumps that are relatively large in size and require external power sources which limit their portability and use in limited-resource settings. In this work, portable, detachable, low-cost, and power-free paper pumps with engineered capillary tubes (referred to as "grooves") that can passively drive viscous fluids based on capillary action are presented. The proposed grooved paper pumps are capable of generating a controllable flow of complex biofluids within microfluidic devices with minimal user intervention and no external power sources. The pumping performance of grooved paper pumps in this study is tested with undiluted, unseparated whole blood samples - demonstrating successful transport of approximately 150 µL of blood within an average time of 5 minutes to 50 minutes, depending on their design parameters. Results for the flow rate of grooved paper pumps indicate that the number of grooves created within the porous paper determines the profile of the generated flow rate. The experimental data also show that as the number of grooves in the pumps is increased, the flow rate approaches a constant value for the entire duration of pumping before the pump becomes saturated. The promising performance of grooved paper pumps with whole blood offers potential applications of these small, disposable pumps in point-of-care diagnostics in which time is crucial and access to external power is limited.


Assuntos
Remoção de Componentes Sanguíneos , Técnicas Analíticas Microfluídicas , Papel , Animais , Remoção de Componentes Sanguíneos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Porosidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...